Бандирський Богдан Йосипович

Матеріал з Electronic Encyclopedia of Lviv Polytechnic
Перейти до: навігація, пошук
Бандирський Богдан Йосипович
X-Bandyrskyi-BY.jpg
к.ф-м.н., доцент
Дата народження 19 травня 1957 року.
Місце народження м. Львів
Громадянство Україна
Alma mater Львівський політехнічний інститут
Дата закінчення 1979 р.
Спеціальність «Прикладна математика»
Галузь наукових інтересів Матричної задачі Штурма-Ліувілля
Кваліфікаційний рівень інженер-математик
Науковий ступінь кандидат фізико-математичних наук
Дата присвоєння н.с. 1988 р.
Вчене звання доцент
Дата присвоєння в.з. 1993 р.
Поточне місце роботи Національний університет «Львівська політехніка»,Кафедра прикладної математики, Інститут прикладної математики та фундаментальних наук

Бандирський Богдан Йосипович — кандидат фізико-математичних наук, доцент кафедри прикладної математики, Інституту прикладної математики та фундаментальних наук, Національного університету «Львівська політехніка» .

Загальні відомості

Народився 19 травня1957 року.

1979 — закінчив Львівський політехнічний інститут за спеціальністю «Прикладна математика»;

1988 — кандидат фізико-математичних наук за спеціальністю «Обчислювальна математика»;

1993 — доцент кафедри обчислювальної математики та програмування.

1998— доцент кафедри прикладної математики.

Навчальна робота

В університеті читає курси:

програмування,

чисельні методи,

мікроекономіка,

макроекономіка,

математичні методи економіки.


Наукові зацікавлення

Функційно-дискретні методи в задачах на власні значення

Основні публікації

Наукові та методичні праці

  1. Бандырский Б. Й., Макаров В.Л., Уханов О.Л. Достаточные условия для задачи сходимости неклассических асимптотических разложений для задачи Штурма-Лиувилля с периодическими условиями // Дифференциальные уравнения №3 (35) (1999), Минск. – С. 267-278.
  2. Б. Й. Бандирський, І.І. Лазурчак, Л.А. Остапчук. Розв’язування задач на власні значення для звичайних диференціальних рівнянь з різними крайовими умовами. Міжнародна наукова конференція «Обчислювальна математика і математичні проблеми механіки», Дрогобицький ДПУ ім. Ів. Франка, 2001 р., с. 75.
  3. Бандырский Б. И., Лазурчак И.И., Макаров В.Л. Функционально-дискретный метод для решения левоопределенных задач Штурма-Лиувилля с собственным параметром в краевых условиях // Журнал вычислительной математики и математической физики. Т.42, №5, 2002 г., с. 676-689.
  4. Bandyrskii B.I., Lazurchak I.I., Makarov V.L. A Functional Difference Method for Solving Left-Define Sturm-Lioville Problems with an Eigenparameter in the Boudary Conditions // Computational Mathematics and Mathematical Physics, vol.42, №5, 2002, pp. 646-659.
  5. V. Makarov, N. Rossokhata, B. Bandyrskii. Functional-Diskrete Metod with High Order of Accuracy for Eigenvalue Transmission Problem. SIAM, Numerskal Analysis, 2002.
  6. В.Л. Макаров, И.И. Лазурчак, Б.И. Бандырский. Неклассические асимптотические формулы и аппроксимация произвольного порядка точности собственных значений задачи Штурма-Лиувилля с условиями Бицадзе-Самарського. Кибернетика и системный анализ. 2003, №6, с. 102-121.
  7. Makarov V., Rossokhata N., Bandyrskii B. Eigenvalue Transmission Problem Modelling Vibrations of Composit Stanks // Тези доп. VI міжнародної конференції «Математичні проблеми механіки неоднорідних структур», Львів, 2003, с. 131-132.
  8. Бандирський Б.Й. Двосторонні оцінки для власних функцій періодичної задачі Штурма-Ліувілля // Тези доповідей наукової конференції проф.-викл.складу інститутук прикладної математики та фундаментальних наук, Львів, 2003, с. 30.
  9. Макаров В.Л., Лазурчак І.І., Бандирський Б.Й. Fd – метод знаходження власних значень для системи звичайних диференціальних рівнянь // Міднародна конференція «Проблеми чисельного аналізу і прикладної математики» присвячена 85-літтю академіка О.А. Самарського і 160-літтю Національного університету «Львівська політехніка». Тези доповідей (м. Львів, 13-16 вересня 2004 р.), с. 41.
  10. Бандирський Б.Й. Функціонально-дискретні методи в задачах на власні значення: Монографія – Львів: Видавництво Націоанльного університету «Львівська політехніка», 2004, с. 184.
  11. Bandyrskii B., Gavrilyuk I.P., Lazurchak I.I., Makarov V.L. Functional-Diskrete Methods (FD-Method) For Matrix Sturm-Liouville Problems I // Jenaer Shriften zur Mathematik und Informatik, Engang: 12.04.2005. Math /Inf/03/05. Als Manuskript gedruckt, Fridrich-Schiller-Universital Jena. – 20 p.
  12. Б.Й. Бандирський, І.І. Лазурчак. FD-метод для знаходження власних значень матричної крайової задачі // XII Всеукраїнська наукова конференція «Сучасні проблеми прикладної математики та інформатики» (4-6 жовтня 2005 року). Львів: Видавничий центр ЛНУ ім. Ів. Франка. Тези доповідей, с. 28.
  13. Makarov V.L., Gavrilyuk I.P., Lazurchak I.I., Bandyrskii B.I. Functional-Diskrete Method for Matrix Sturm-Liouville Problems, CMAM, 2005, p. 362-386, №4, Volume 5.
  14. Makarov V.L., Lazurchak I.I., Bandyrskii B.I., Sapagowas M.I. Eigenvalue Problem for the Sekond Order Differencial Equation with non local Conditions. Jornal nonlinear Analisis: Modeling and Control, 2006, Volume 11, №1, p. 13-31.
  15. Макаров В.Л., Гаврилюк І.Р., Лазурчак І.І., Бандирський Б.Й. Функціонально-дискретний метод для матричної задачі Штурма-Ліувілля. ДАН України, 2006 р., №1, с.23-29.
  16. Б. Бандирський, І. Лазурчак. Матрична задача Штурна-Ліувілля з нероздільними крайовими умовами. 24-28 вересня, 2007 р., Дрогобич, Україна. Міжнародна математична конференція ім. В.Я. Скоробогатька.
  17. В.Л. Макаров, И.П. Гаврылюк, Б.И. Бандырский, И.И. Лазурчак. Функционально-дискретный метод для матричной задачи Штурма-Лиувилля с нерозделяющимися условиями. Грузинський Элктронный Научный Журнал: Компьютерные науки и телекомуникация. – 2007. – Т.13, №2. – С. 21-51.
  18. Б.И. Бандырский, И.П. Гаврылюк, И.И. Лазурчак, В.Л. Макаров. Функционально-дискретный метод для матричной задачи Штурма-Лиувилля с нерозделяющимися условиями. УДК 519.63, 18.05.07.
  19. Бандирський Б.Й., Лазурчак І.І. FD-метод для квазілінійних диференціальних рівнянь. Обчилювальна математика і математичні проблеми механіки: збірник наукових праць. – Львів, 2009. – С. 36-38.
  20. Бандирський Б.Й. Застосування чисельних методів для оптимального розв'язування задач менеджменту. НАУ, Актуальні проблеми економіки, №10 (100), 2009, с. 136-140.
  21. Застосування оптимальних математичних конструкцій для стандартизації метричних мір. Бандирська О.В., Бандирський Б.Й. «Простір і час – система координат розвитку людства», збірник матеріалів VIII Міжнародної науково-практичної конференції, Київ, 25 серпня – 1 вересня 2011 р.
  22. У 2011 році отримав диплом на VIII Міжнародній науково-практичній конференції «Простір і час – система координат розвитку людства», м. Київ, м. Лондон, 2011 р.
  23. Oresta Bandyrska, Bogdan Bandyrskyy. Diploma «Scientifie progress», on the section «Instrument manufacturing, metrology and information-measuring devices and systems», international Academyot Sciences and Higher Education, London, №21 1PQ.
  24. Optimization Algorithms for Computing Multiple Integrals. Bandyrskii B., Hosko L., ., Lazurchak I., Melnyk M. Mathematical Modeling and Computing, Vol.X, №X, pp. 1-10 (2017).
  25. Бандирський Б.Й., Макаров В.Л., Романюк Н.М. Узагальнення резонансних рівнянь для поліномів типу Лагерра і Лежандра на рівняння четвертого порядку. УМЖ-2019-71, № 11. С. 1529-1538.
  26. Generalization of Rezonant Equations for the Laquerre and Legender – Type Polinomials to Equations of the Fourth Order. Makarov V.L., Romaniuk N.M., Bandyrskyi B.I. Ukrainian Mathematical Jornal, 2020,71(II), p.p. 1751-1762.

Монографії:

  1. Інформатика, комп’ютерна техніка та програмування. Конспект лекцій. Каленюк П.І., Кравець І.Т., Петрович Р.Й., Демків І.І., Чабанюк Я.М., Бандирський Б.Й. Видавництво НУ «Львівська політехніка», Львів, 2003 р., 127 с.
  2. FD-методи в задачах на власні значення. 2004, Видавництво Національного університету «Львівська політехніка». — 183 с.
  3. Бандирський Б.Й., Кутнів М.В. Розв'язування задачі Діріхле для рівняння Пуассона методом скінчених різниць. Методичні вказівки до лабораторної роботи з курсу «Чисельні методи математичної фізики» для студентів спеціальностей «Прикладна математика» , Львів, 2007.
  4. Бандирський Б.Й., Мединський І.П. Теорія споживання. Методичні вказівки до курсу «Математичні моделі економіки», Львів, Видавництво НУ «ЛП», 2007. – 64 с.
  5. Бандирський Б.Й., Мединський І.П. Моделі ринку і теорія загальної рівноваги. Методичні вказівки до лекційних і практичних занять з курсу «Математичні моделі економіки», Львів, Видавництво НУ «ЛП», 2016. – 48 с.

Методичні праці:

  1. Інформатика, комп’ютерна техніка та програмування. Конспект лекцій. Каленюк П.І., Кравець І.Т., Петрович Р.Й., Демків І.І., Чабанюк Я.М., Бандирський Б.Й. Видавництво НУ «Львівська політехніка», Львів, 2003 р., 127 с.
  2. Бандирський Б.Й., Кутнів М.В. Розвязування задачі Діріхле для рівняння Пуассона методом скінчених різниць. Методичні вказівки до лабораторної роботи з курсу «Чисельні методи математичної фізики» для студентів спеціальностей «Прикладна математика» , Львів, 2007.
  3. Бандирський Б.Й., Мединський І.П. Теорія споживання. Методичні вказівки до курсу «Математичні моделі економіки», Львів, Видавництво НУ «ЛП», 2007. – 64 с.
  4. Бандирський Б.Й., Мединський І.П. Моделі ринку і теорія загальної рівноваги. Методичні вказівки до лекційних і практичних занять з курсу «Математичні моделі економіки», Львів, Видавництво НУ «ЛП», 2016. – 48 с.

Конференції:

  1. Мусій Р.С., Дрогомирецька Х.Т., Орищин О.Г., Бандирський Б.Й., Гошко Л.В. Моделювання термопружної поведінки електропровідного циліндра за електромагнітної дії в режимі згасної синусоїди з врахуванням процесу термопружного розсіювання енергії. XIX Міжнародна конференція з математичного моделювання, присвячена 250 – річчю з дня народження Жана Батиста Жозефа Фур’є, Херсон, 17.09.2018 – 21.09.2018.


Контакти

79013, Львів-13, вул. Митрополита Андрея 5, IV навчальний корпус,кімната 213, +38(032) 258 23 68

e-mail:bogdan.polynet@gmail.com; Bohdan.Y.Bandyrskyi@lpnu.ua